Room temperatur 127?? You fucking kidding me?
127C is far more achievable electronic systems vs 4K or something…
“Room temperature” hahahahahha everything is “room temperature” if you make it happen. That is not the idea of the expression room temperature
The important thing is that a device could be that temperature in a regular room without insulation or really particularly special components. Yeah its above room temperature but so is my desktop processor.
You haaaave to be an idiot
No need for name calling. I have a masters in mechanical engineering and am working on a cryogenic space radiator for work. Its being pretty semantic to say “well ac-tually 127C is way above room temperature, so this article is invalid and the breakthrough is irrelevant.” My point is that a significantly smaller system can be produced to run at 127C that’s normal industrial equipment and some hotter electrical equipment levels that doesn’t require a large power helium cryocooler system to run continuously, like many devices that use superconductors today need.
If this were true they wouldn’t have released this, they’d have released a room temperature and pressure superconductor and instantly become billionaires.
I would be very skeptical of this paper’s claims.
-
It hasnt been peer reviewed
-
The data hasn’t been replicated
-
The clains being made are extraordinary. i.e a cheap material that has a superconduction transition temperature 200 degrees kelvin above the cuprates at standard pressure
-
The fragility of this superconductive state makes me wonder if what theyre claiming to observe is an artifact (pathological science) rather than a real effect
-
The paper is “rough around the edges” i.e multiple proofreading mistakes and has undergone little apparent editing for quality
There’s no room for pathological science
https://sciencecast.org/casts/suc384jly50n
The only way to do something like that with diamagnetism or ferromagnetism is to deliberately fake the arrangement of magnets.
There is always room for pathological science. Especially when something like room temperature superconductors are the subject in question. A good researcher will try to find and test all the alternative hypotheses that they can. i.e contrast the cisplatin paper with fleischmann and pons’ paper about cold fusion. This paper reminds me a lot more of the cold fusion paper than it does the cisplatin paper. Another example of a bad paper would be NASA’s announcement of a microbe that used an Arsenic containing analog of DNA.
I’m not excluding the possibility of fraud, but the fraud would have to be deliberate, not self delusion.
-
Just a word of caution: Non-peer reviewed, non-replicated, rushed-looking preprint, on a topic with a long history of controversy and retractions. So don’t get too excited yet.
Okay so I agree that it needs to be peer reviewed and independently verified before we can trust it. But how exactly does the preprint look rushed?
I would also like to know. Apparently there were some proofreading errors etc. Someone in reddit explained that rushing the publish might be explained by wanting to stake the claim and get the ball rolling on reproducing the results as fast as possible.
Honestly as someone who is also in research, that is pretty understandable. Preprint papers are all subject to peer review and editing after the fact, but are a good opportunity to stake your claim on a big discovery before someone else can. Preprints are inherently not final versions and I guarantee that the mistakes will be caught before publication.
As someone that no longer has access to university library’s journal subscriptions, I very much support publishing these in a openly accessible manner.
It’s visibly made in word. That’s enough to be rushed.
Exactly. Most papers I’ve seen out there use LaTeX. This is clearly Microsoft Word.
And it definitely looks it. That is, shitty.
Depends on the discipline, but yeah, engineering would usually be LaTeX
Most engenee fields use word…many don’t even accept latex…judging quality of work bases on how a paper looks is shallow and irresponsible.
In physics, however, using Latex is absolutely the norm, and on the arxiv it’s also absolutely the norm. That they aren’t using it shows at the very least that they’re out of touch with academic practice. I mean, if their extraordinary claim is true it would be one of the most significant discoveries of the century and pretty much a guaranteed Nobel prize. Therefore you might think they would put at least some amount of effort into presenting their results, such as producing nice looking plots, and, well, using Latex like a normal working physicist. The fact that they don’t doesn’t mean that they’re wrong, but it doesn’t exactly increase their credibility either.
PS: I also just noticed that one of their equations (p. 9 in 2307.12008) literally contains the expression “F(00l)”. Again, maybe they’re just oblivious and didn’t realize that could look like they’re calling us fools, but the extraordinary claims together with the rather unorthodox and low-effort presentation make me very skeptical.
This is fair enough…but still seems odd to judge paper solely based on text editor choice…judging paper based on clear errors in presented information is fair game.
Hi. I hold 3 degrees in engineering. 100% of what you said is wrong.
Latex is the norm in any engineering publication I’ve ever been involved with, be it as author, reviewer, or editor. The ones that do take word do so reluctantly and only in a way they can readily convert to latex later.
Judging a quality of a word based on how a paper looks is perfectly valid. I’m disinclined to trust research by people not willing to put in the minuscule effort of typesetting a paper. What else did they cut corners on?
Have you… seen the… figures?!! Also, the Arxiv listing had a spelling mistake. “First” was spelled as “firs”.
anyone with a better understanding able to articulate potential trade-offs/complications to using this in practical applications?
*edited:
more discussion: https://news.ycombinator.com/item?id=36864624the critical field and critical current seem very low … This means you can’t actually push big current through this thing (yet). You can’t make a powerful magnet, and you can’t make viable power lines
The method to produce this material as described in the related paper [1] is fairly simple and could be done at home with a $200 home metal melting furnace from amazon and the precursors (which also seem to be fairly standard easy to obtain metals)
Read this comment thread from SC researchers: <reddit link removed>
Lots of problems with the paper, they claim. It is not up to the standards of current SC research. One of them says Dias’s work shows more merit than this.In amongst that discussion is a lot of reason to hope this will be better, several note that the researchers made a low quality sample “spongy crap” and that in other superconductors made at that quality are just as limited, only becoming useful when better quality samples are made
that’s great news! let’s hope replication and peer review is smooth!
Insane capacity batteries
Lossless power transmission via wires
Better magnetically levitating trains
Much more power efficient computers, electronics
The list is huge
no i know many of the applications, its huge if true! i understand that, but almost everything like this comes with trade-offs, and i was wondering if there are any here that would make it non-viable for some/all applications
The claimed saturation current is very low. If this is inherent and not just a first-try thing it will be less-good than permanent magnets for doing many magnetic-field things and less-good than Aluminum for some current-carrying things.
It’s a perovskite, in semiconductor applications these have stability and durability problems.
It might also be a scam. This would make it useless.
The only drawback is that LK-99 is polycristalline… Levitating trains and computers, electronics, are a stretch as long as the material is not monocristalline.
It is huge nethertheless.
ELI5?
ELI5 :
Think of the material as a powder. You can compress the powder and make current flows though it. It’s good for wiring, etc.
But to have an application in electronics, it would have to be like a metal, which it can’t be since it’s a powder
Metals are usually polycrystalline. Not sure what you’re trying to say.
Power cables are currently (heh) designed to operate below 90degC, because after this you get thermal runaway and the conductor melts. That’s already within the operating range of this.
from what i read, it doesn’t seem like you’re able to push much current through it, which makes power cables an unlikely application in its current (heh) form
It would be a real bummer if this came out to be untrue. However it’s simple enough to replicate, so we will know soon enough
What’s the purpose of posting these results before they have been peer reviewed and reproduced?
Because this is how they get peer reviewed and reproduced? Publishing is how science works?
Publishing this outside of a reputable journal is definitely not how papers get peer reviewed. In fact, its a huge red flag.
All computer science papers are released on arXiv before publishing. It’s pretty normal.
deleted by creator
This is a preprint published on arXiv.org, which is as reputable as it gets before peer review (so no red flag but standard practice). But I agree that people shouldn’t place hopes in this before it’s been peer reviewed and replicated by independent researchers.
My comment was directed specifically at the parent’s comment about publishing (in general not in a reputable peer reviewed journal which arxiv isnt) being how peer review happens. Arxiv is a preprint server. There is no peer review and while many of the papers there have survived the peer review process, a paper being on that server doesnt really say anything about the quality of that paper. It could be a great paper, it could be garbage or somewhere in between the two extremes. In any case, the hype around this paper is concerning because it has not, as of yet, survived the scrutiny that is demanded by the claims it is making.
Via Lemmy?
No, obviously not, it clearly states in the Official Rules of Science that only some forms of media are acceptable.
If they’re wrong they’ll be laughing stocks forever like the idiots who tried to have FTL neutrinos.
Let people read this stuff, it’s better than trying to hide it and having every redneck believe we have secret technology the government doesn’t share with you.
We are all peers here.
I’m not sure you understand what peers means.
No you should put the paper in a filing cabinet somewhere and see what happens
I think the question was “what’s the purpose of posting this on Lemmy?” (not arXiv) because that does nothing for peer review but a lot for stirring laypeople’s wild imagination.
I was having a really terrible day yesterday, the overblown hype about this was a bright spot for me. I don’t watch arxiv myself so I am happy to see this stuff.
Bragging and getting the names of the researchers in the press.
I mean; that’s a sure fire way to have it all backfire isn’t it? When someone else tries to replicate it and it doesn’t work? And they all get called out for it being utter bullshit?
What is this absolute garbage take that scientists just making extraordinary claims for “prestige” or whatever? They’ll be laughed out of the profession if they’re intentionally lying in a paper.
Now, it could be that they think they’re on to something only to have it proven false for one reason or another (flawed experiment, incorrect hypothesis, unaccounted factors etc) but that’s more in line with how peer review works - it’s not the claim that makes you famous it’s the proof.
That “levitation” video is worthless: One edge of it is still resting on the magnet, and plain old steel screws will do that if you put them on a plain old speaker magnet. If they can’t even manage to show actual levitation after claiming it, then I highly suspect the rest of the claims are just as invalid.
This is huge, is it not? No loss in potential energy means that I could have an infinitely floating coffee cup without the use of power, no?
If it were real maybe. But having read the paper, I am very skeptical that it is.
It is absolutely huge
It means that you can make supercapacitors which have larger energy storage density than our current batteries by who knows how many times
What’s the connection between conductivity and capacitance?
It’s been a while…
I didn’t read or watch the video yet, but if it works like the current superconductors, the magnetic fields will be repealed and cannot enter the superconductor.
However currently is it possible to make superconductors with impurities allowing the magnetic fields to enter (through the impurities) in the superconductor. This allow quantum locking / magnetic locking.
https://en.m.wikipedia.org/wiki/Flux_pinning
However as said above, you need a magnetic field. So either a permanent magnet or by generating one with electricity use.
Another interesting thing is that superconductors allow to store electricity for an indefinite amount of time. Like you put eletrcitiy in it and it will still be in it after 20+ years. However it is not an infinite energy. If it generates work or it is extracted from there, it will dissipate. As the energy will be used up.
If they take too long the room temperature won’t be enough due the increase in temperatures 😅 /s
Tc is allegedly 120C, so we,ve got a couple of years if it’s not a scam.
I’m gonna go out on a limb and say that until this is peer-reviewed and replicated, this is worthless.
I’ll also gladly eat my shorts if it turns out they actually did it but ATM I’m very skeptical.
I do hope they are right I would love see you eat your shorts.
I can count on my hands the amount of times I’ve seen revolutionary room conditions superconductor papers, which may not be too many, but enough to quickly dismiss this especially because it looks really barebones
Really? That’d be something else.
deleted by creator
It matches and it’s not an article but a research paper.
Itsa glitch, I’m still working on improving it. Sorry for the inconvenience.
Sceptical because “revolutionary” discoveries like this always end up either being bogus or have some massive caveat that makes them effectively useless outside of very specific scenarios.
Thought I will be pleasantly surprised if proven wrong
To be honest, this seems very sus to me. A big paper with only three authors?! I went down the rabbit hole of trying to find the lab from which it has been published. It’s almost there is no online presence. In another paper they put out along with it, they say that they show Meissner effect (levitating effect of a superconductor) and that a video is attached. I looked for the video but I wasn’t able to find it. :/
They published another version with a longer list of authors. They published this one under three authors since that’s the maximum number you can split a Nobel prize between. Doesn’t necessarily mean it’s the real deal, but it means that the researchers sure think it is.
A big paper with only three authors?!
That part isn’t so unusual, especially in condensed matter, where labs can be relatively small. For example, the paper announcing the discovery of high-temperature superconductivity in 1986 only had two authors (Bednorz & Müller).
I went down the rabbit hole of trying to find the lab from which it has been published.
For those who didn’t look into the paper: They seem to work for a company called “Quantum Energy Research Centre, Inc.”, which does sound a bit… woo-y to me. At least the third author seems to work at Korea University, which, according to Wikipedia, is relatively prestigious. Who knows, maybe the authors just can’t be bothered to use Latex and didn’t choose the name of the company or didn’t put too much thought into it, but for the moment I’m also rather skeptical.
Yeah, in olden times sure. You can say a big paper like EPR paradox one, was written as only three people. These days, a lot of people would jump on a big paper since citations is the currency of research now.