• @[email protected]
    link
    fedilink
    English
    72 years ago

    But why would you divide the numbers to two sets? It is reasonable for when considering 2, but if you really want to generalize, for 3 you’d need to divide the numbers to three sets. One that divide by 3, one that has remainder of 1 and one that has remainder of 2. This way you have 3 symmetric sets of numbers and you can give them special names and find their special properties and assign importance to them. This can also be done for 5 with 5 symmetric sets, 7, 11, and any other prime number.

    • @[email protected]
      link
      fedilink
      32 years ago

      Then you have one set that contains multiples of 3 and two sets that do not, so it is not symmetric.

      • @[email protected]
        link
        fedilink
        42 years ago

        You’d have one set that are multiples of 3, one set that are multiples of 3 plus 1, and one stat that are multiples of 3 minus 1 (or plus 2)

        • @[email protected]
          link
          fedilink
          12 years ago

          How do you people even math.

          You might as well use a composite number if you want to create useless sets of numbers.

    • @[email protected]
      link
      fedilink
      42 years ago

      Not sure about how relevant this in reality, but when it comes to alternating series, this might be relevant. For example the Fourier series expansion of cosine and other trig function?

      • @[email protected]
        link
        fedilink
        English
        2
        edit-2
        2 years ago

        But then it is more natural to use the complex version of the Fourier series, which has a neat symmetric notation

      • @[email protected]
        link
        fedilink
        English
        12 years ago

        Not intentionally, but yes group rise in many places unexpectedly. That’s why they’re so neat