EBikes are awesome. I live in a hilly area where riding is tough. EBikes allows people of all ages and abilities to get out. Even with the assistance you still burn calories… as long as it’s assisted peddling and not the illegal bikes I see delivery guys riding.
I ride road bikes but when I get older and less capable I’ll certainly invest in an ebike.
I don’t begrudge the deliverers their powered bikes, they have a tough enough gig and it’s one less car. I do wish e-scooters would stop going fast among foot traffic though. My kid moves pretty unpredictably, and has had near misses in pedestrian areas
deleted by creator
Food tends to have significant energy inputs in the form of methane gas used in the production of nitrogen fertilizer, diesel tractors, transportation, and cooking
deleted by creator
You burn calories when you exercise
My 30km round trip bike to work burns about ~800 calories, or 1.33 big-mac equivalents, which has a carbon footprint of about 4.2kg CO2
That same round trip would burn 2L gasoline in my car, which has a carbon footprint of about 4.6kg CO2
Edit: I see where you are getting your numbers now after looking around. I will leave my comment here for sake of others seeing it and the discussion.
How are you getting 4.2 kg of CO2 for 800 cal???
The average estimate is 0.35 per 1000 cal for the more eco friendly
https://ourworldindata.org/grapher/ghg-kcal-poore
https://www.globe.gov/explore-science/scientists-blog/archived-posts/sciblog/index.html_p=183.html
If you are eating stupid amounts of meat every meal, sure you might average that high.
And more than that, the food is just CO2, arguably not as bad of a GHG. the petrol/gasoline also has the really bad stuff people don’t bring up as much, such as the nitrogen-oxides and sulfurs.
numbers are just cursory googles so they may be off, e.g. “carbon footprint of a burger” (~3.2kg CO2 per) followed by “calories in a big mac” (590)
The majority of the calories in a burger come from the bun and condiments, so it’s pretty far from a “stupid” amount of meat - As sad as it is, the average american eats 12.2oz of meat a day, and a big mac only has 3.2oz
Food production (particularly beef and rice) are among the worlds largest sources for methane (a worse GHG) - also usually fossil fuels burned by production/transportation is generally factored into these estimates
Regardless, the point i was poorly making is that this infographic sucks because it makes a false equivalency between “energy efficiency” and “good for the environment”. As I noted - biking is substantially more energy efficient than driving an ICE (~21x; 800 vs 16680), but after adjusting for the carbon footprint of food, that 21x becomes somewhere in the range of ~1-9x depending on diet. I suspect this graphic doesn’t list ICEs because they weight half as much and likely come in at a higher efficiency (despite being better for the environment) - which of course goes against the narrative it’s trying to present
deleted by creator
Interesting. I’ve never owned an electric car, but just guesstimating based on those numbers, my daily commute would cost something like 25 cents in electricity. Not too shabby.
I did buy an ebike a few years back and watched to see how much the bill went up, but frankly never noticed any change. At 2 cents per day, it’s basically a rounding error relative to other electrical usage, so that makes sense to me now.
Keep in mind that although an electric bike might use more energy input than a regular road bike, it uses a much cleaner type of fuel. Even the most dirty coal power plant in the world has a significantly lower CO2 output per watt hour than the food you are eating to power a bicycle. Even if you are vegan
We should probably just stop eating.
deleted by creator
A plant based diet has a CO2 intensity of ~1 g / Wh
Yes, and since our metabolism is very inefficient you actually need to eat almost 4 watt hours worth of food for 1 watt hour of energy output, everything else just turns into body heat. Meanwhile ebikes have an efficiency of roughly 70-80% when accounting for charging losses and motor efficiency.
Now do one where you A) normalize this to the same trip distance (not speed, so that these choices for a single trip become meaningfull) and B) convert the kWh into CO2 emissions, including the emissions in growing and transporting the various power and food production methods used (coal to solar, locally produced veggies-air shipped beef)
Yeah, if you account for the amount of CO2 that goes into producing food the ebike will be much more efficient in terms of co2/km than a regular bicycle. Even if you cheat by making the regular bicycle drive slower than the ebike, like they did for this chart.
Trip distance is dependent on methods of transportation at the aggregate level. That’s only relevant for policy decisions or collective actions, not individuals of course, but if we are going to deal with climate change, collective action is necessary.
Given the graph is normalized by km traveled, its overly generous to cars.
It’s already normalized to distance, the graph is showing kWh/km. The speed is just there for additional context.
Thanks a lot for linking the source!
you’re welcome. It’s something I try to do routinely.
Energy efficiency and carbon footprint are very different things - pretty sure the carbon footprint of 15 big macs (8500kcal) is substantially greater than 1L of gasoline (let alone an electric grid equivalent)
In this regard, a vegan cyclist is going to beat out anyone in a car.
A quick googling tells me a burger is about 3kg of CO2 equivalents. 1L of gas seems to be about 2,5kg.
Now if you were to eat local and seasonal food I’d guess you can get more efficient than burning oil.
Edit: As @bjorney correctly pointed out a quick google in the morning, before the brain functions properly kick in, isn’t the best way to produce comments on numbers. I did NOT account for the factor of about 15 that a burger needs to get close the energy stored in a liter of gasoline.
Edit to the edit: Just out of curiosity I did another quick google (please brain, be functioning now) and it seems that to get 8500kcal from oats you need about 2,5kg. This seems to produce about 1kg of co2 equivalents. I am certain that this does not include the amount of co2 the human is expelling in excess by using their muscles instead of a motor, so the whole discussion is probably moot anyways.
that’s one burger, you would need at least a dozen burgers (14.2 big macs) to match a liter of gasoline (8340 kcal)
Damn, my brain got way to happy about the numbers being so close that I completely overlooked that. I’m gonna defend myself by saying that this was early in the morning ;)
Edited my original comment to reflect this fact.
lol all good - I posted some napkin math above - https://lemmy.ca/comment/7747680
Long story short this figure is just all around bad because it’s conflating energy efficiency with environmental friendliness.
Electric vehicles, despite being greener, are probably less efficient (which is why ICEs are mysteriously absent from this figure), it takes a lot more watts of power to move a 5000 pound car than it does a 2000 pound one). Similar story with biking - based on my Garmin figures, biking is about 22x more energy efficient than driving an ICE car, but the carbon footprint of that energy source is much higher watt-for-watt, so if you eat a meat heavy diet, the bike is barely greener than driving (caveat: I didn’t amortize the footprint of constructing the car, which is a probably a huge deal - if cycling is actually an option for you, your mileage probably isn’t that high).
Granted - you are spot on with oats, if you pick a greener crop like corn you are down to 0.5kg carbon per 1L of gasoline equivalent - as the guy below wrote, biking is a “greener choice” if you are vegan (3-6x less carbon footprint), but at the end of the day, manual transportation is a thing people choose for health or pleasure reasons, or when the distance is so low that other methods don’t make sense. if you are going to try and shame people into doing it out of a sense of environmental responsibility, you shouldn’t need to use dubious math to accomplish that end
This would be much more efficient if it had other transportation as well.
Like non-electric cars, trains, subways, etc.
It’s not too hard to get their efficiency as well.
NEXT DAY EDIT: Should’ve looked, there’s actually a handy chart showing the energy efficiencies of a whole bunch of vehicles and modes of transport just straight up on Wikipedia. This article. Comparing the km/MJ column, we can see:
Walking 4.55
Velomobile with enclosed recumbent: 12.35 (there wasnt a figure for just regular biking)
Solar car: 14.93
Tesla Model 3: 1.76
General Motors EV1: 1.21
All combustion engines are below 1, but here’s a few:
VW Passat: 0.33 Cadillac CTS-V: 0.17 Renault Clio: 0.42
There’s a whole bunch of other stats though so I suggest checking the table
END EDIT
Also biking and walking are not necessarily even viable for certain commutes such as any over about 4 miles/ whatever that is in kilometers say 8, and anytime I need to carry heavy luggage / groceries. Or anytime anybody with mobility issues needs to travel.
It’s all very well insane if we wanted to buy an e-bike and get rid of their car but that’s not really practical.
The break-even distance in urban areas, where it takes the same amount of time to bike, is typically more like 7 miles. That’s about half of commutes. Not a 100% replacement for everybody, but big enough to make a meaningful difference.
<7km is too far to bike?
Oh man. Well, I agree on the other things you said, but… 6.4 km isn’t that much. It’s a fair bit, yeah, but not that much. With an e-bike, it’s not really even a thing. I chose to use the healthcare in the next city over (I live on the border of two cities) and I have about ~7km whenever I go there. 10-15 min with an ebike. With a regular one it’d be a chore, but it wouldn’t take much longer, 20-25 minutes maybe with a loose pace.
But yeah biking definitely can’t replace everything. I mean, cargo bikes exist, but still.
With mobility issues, we now have a lot of mobility “scooters” that go about 25km/h per the EU regulations. Like a super buffed up wheelchair. with a sort of chassis. Small enough to fit in the back of a taxi-van that has a disabled lift, but still quick enough to use in a similar way as a bike.
Still tho. I want my cheap rental ecars.
Bikes don’t have to replace everything to make a big difference. Something like “use them as the default choice for shorter distances” makes a big difference.
Oh definitely.
I would like to one day see one of those horrible American cities that you can’t even traverse on foot / bike, but I don’t want to step a foot in the US, with the whole fucked up corruption, military-industrial complex, and the whole budding protofascism.
This should include gas cars too which are ungodly inefficient
Yeah but what about if a person is a massive hambeast? Ain’t no cycles going nowhere under that strain.
Or what if they are a massive douchenozzle chud fuckwit?!? It would emasculate them to not have the largest most unnecessary truck possible?!?
removed by mod
Oh there’s always a genuine, non-sarcastic use for a car. I’m close enough to work to cycle without blinking, yet scheduling and family pressures / drop-offs/ pick-ups mean that it’s more time-sensible to drive.
I hate it. I used to cycle every day to work.
The other shitty thing in the equation is the public transport which functions at a generous 40% of what it might.
I’d hate to wrap my soggy brain around solving the problem, but I wish someone would; more routes, more frequency, more funding. = fewer cars.
removed by mod
I feel seen
Let me just travel 30km to the shops by foot and carry shopping home another 30km back again
That means the urban planning in your area is garbage. That is fixable and has to be fixed.
Wouldn’t go as far as calling it urban, it’s a few streets on a mountain
there’s always outliers. don’t worry noone is saying you need to walk in those circumstances
A few streets on a mountain can and should have a grocery store. For the occasional specialized needs, rural residents can use comparatively inefficient modes of transport because of their relatively small number. There’s still a huge margin for better efficiency and planning.
Have you heard of this miraculous thing called public transit? And there are things called panniers which are pretty cool too.
But frankly, if you don’t have groceries within walking distance, your neighborhood and your zoning laws are very poorly designed.
And that’s deliberate. Neighborhoods around the world are designed to require cars to live in, because of oil company lobbying, and also for “security”, in order to keep out people too poor to own cars.
Getting rid of cars requires changing the various ways our cities are designed to make cars necessary. That’s worth doing too.
Can confirm. It takes an hour to walk to the city. I have 3 grocery stores within 10 min of walking (checked with Google maps too)
My neighborhood pre-dates cars
It might’ve had grocery stores in it before, or tiny lawn stores and such. It might’ve also just been very poorly designed.
deleted by creator
Living outside land of the free, I have like 4 grocery stores and 1 supermarket within 15min walking distance, and I don’t live in a dense neighborhood.
In this graph a bus would be a lot worse than a far given the massive size, aerodynamic brick wall, and constant stops.
Yeah but you have to divide the footprint by the average number of travelers.
Which in non city environments with high frequency is often only a handful to a dozen at most. Not that it matters, as this graph doesn’t show or or try to compare per person, only calories per vehicle mile.
I don’t live in a city.
I used to live in a place that was somewhere between suburb and rural and I loved not being around people but I hated not being able to walk to get basic necessities. Now I live in the city and I have everything I could ever need within a 15 minute walk and I get to choose whether I pay for a car, a licence, plates, insurance, gas, maintenance and repair. This system really has us fucked into believing that this is the way it should be.
removed by mod
Actually was priced out of everywhere else
removed by mod
Also carry 4 other humans with you when you go
Maybe the most surprising thing here is that regular biking is still twice as efficient as e-biking even given our mediocre metabolic efficiency and a physique that isn’t exactly designed for the bicycling motion.
It makes sense to me…
For example if the the e-bike rider had to spend 1/5 of the energy of the unpowered cyclist (numbers chosen for the example’s sake) that would be 1.1Wh/km they exert.
The remaining 12.9Wh/km would be what was discharged from the battery while riding (from using pedal assist and/or throttle features). This can be measured when you charge it back up at the end of the trip to the previous level.
it also has the Ebike going ~40% faster which means almost twice as much friction to overcome.
Seems to be meaningful that all of the speeds should be the same.
deleted by creator
To be meaningful, they should reflect the real-world imo. Which I they attempt to do? 18km/hr seems really slow for non-ebike (my last commute home by acoustic bike before I got an ebike was 27.0 km/hr), but I guess casual riders might go that speed?. If you use a class 3 ebike in the US, the ebike speed is also really slow (for class 1/2, its about right - I typically get 26km/hr). In Europe, speeds are typically less than the US for ebikes. And I think European urban speed limits tend to be less than US? Of course there’s also traffic, so there are times when cars average less speed than bikes. Depending on location and time of year, how intensely the AC/heater in the car is running may significantly impact traffic fuel efficiency. They could have just included a few different speeds for each option, I suppose.
If you want to apply it to CO2, you need to convert that energy into CO2, but that’s also really dependent on energy source. Coal power will be a lot worse than solar and wind. Typical US beef will be a lot worse than chicken or wheat or solar/wind energy. So, you would need a second chart and then do the calculations. For the average person whose ebike speed and acoustic bike speed are nearly the same, the ebike is better in terms of CO2. If someone gets specifically cleaner energy sources, then it would be a lot better. OTOH, someone connect to a grid that’s mostly fossil fuels, but eats a low-CO2-emitting diet, the acoustic bike might be slightly better.
Really had to drop that car speed down to make a meaningful chart huh?
What would the energy usage be if all of them were going the same speed?
More importantly, the KWH used to go the same distance. Sure a car uses more power… It’s going faster, and gets to its destination faster, therefore using power for less time.
Energy is measured in KWH, people. But yeah, your point about normalizing to the same speed to make the comparison fair is good.
The graph is in Wh per Km, so it’s already measuring the energy per same distance.
It’s still inaccurate though. Even at (slow) highway speeds my Ioniq uses slightly less than 150wh per km, if I drove a constant speed of 45km/h I could easily hit under 80wh per km
Wdym? The faster a car moves (or anything, not just a car) the less efficient it’s gonna be, because it has to fight against more and more wind resistance.
Wdym? The faster a car moves (or anything, not just a car) the less efficient it’s gonna be, because it has to fight against more and more wind resistance.
That isn’t entirely true. At lower speeds there may be other inefficiencies that are worse than wind resistance (since wind resistance becomes negligible at low speeds).
It will depend on the vehicle, but for example, small gasoline cars are more efficient at ~70 km/h than at lower speeds. Electric vehicles will likely be more efficient at lower speeds (~40 km/h) than gas vehicles, due to (lack of) gearing but there will still be low speeds where they are less efficient than higher speeds.
https://www.researchgate.net/figure/ehicle-energy-economy-at-different-speeds_fig1_326822085
In theory I agree, in practice other stuff, as the need for heating/cooling, really muddled the theory and puts the sweet spot speed way up. And if we turn the Aircon off, 150 is a really high number.
The measure of productivity of transportation is distance traveled, not speed (unless this were some time race). Comparing kw/speed tells you nothing about the kWh used to make the same trip as alternative modes of transportation.
They’re saying that at highway speeds the cars energy usage would be off the chart, or if they scaled the chart to that usage, everything else would be too small to discern the differences.
You guys are in agreement.
deleted by creator
Is this actually an empty comment or is something wrong with my client?
It’s empty for me too, fwiw. As is the other reply to you
Aaah, I get it now, thanks!
Besides the other comment being right about air resistance, a speed of around 40 km/h is considered safe in urban environments and artificial obstacles are now being placed to lower traffic speed to about that limit. Also, the mean speed is also around that in towns where you either go faster than the limit or go 0 in a traffic jam
This data needs to be normalized by speed or realistic range/day. Otherwise it’s pretty meaningless.
Like most “fuck cars” memes it’s only relevant if you’re a young single person with no hobbies who never travels more than 5km from their home without taking public transport.
who never travels more than 5km from their home without taking public transport.
So 90% of all humans (excluding 'murica, I guess)
it’s only relevant if you’re a young single person
Literal bullshit. Are your legs made of styrofoam? If not, you can handle a little cycling.
Actually, in February I spent 22 hours on my mountain bike - I know you don’t care snd perhaps not a big deal but it’s a recent achievement in quite proud of.
Regardless, my comments are not about fitness. Young single people tend to have less commitments.
My partner and I have newborn twins. The only transport options are pram and car. We do have a bike trailer for them but it’s not really safe until they’re 1.
The same situation applies if you’re caring for an elderly parent. Which I am.
The way you assume it’s about fitness is kind of a “case in point” to be honest - you’re incapable of considering that others have different transport needs.
Why the hell are you taking newborns or elderly people in long commutes (and not using a train)?
I live in regional Australia. There are no passenger trains within about 5 hours drive.
The city I live in has about 50,000 people. I’m not in the middle of nowhere.
My parents do live in the middle of nowhere though, about an 150km from the nearest grocery store.
My circumstances aren’t that unusual really.
It is totally pointless, I am totally on side of bikes and walkable cities, but this chart is pointless. What battery stores and what humans use is not comparable, and adding combustion engine car/bus/train here would throw the chart to totally other scale. Train has enough kWh to power a small town, but it carries shit ton of load.