- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
deleted by creator
I’ve been studying Arm Aarch32 lately. I have a software development academic background but I have always been interested in Architecture.
It’s now been 18 years since the last time an employer paid me to write assembly, but it’s only been a year or so since the last time I had to read assembly at work (in order to verify what the compiler really was doing).
I remember watching assembly demos in the early-mid 90s and thinking those guys were wizards
Anyone who thinks OP asking about Assembly with this meme should play the game Turing Complete. It’s great. You have to design a computer all the way from the most basic logic gates (I think you only get a NAND gate to start), designing an ALU and CPU, creating your own machine language, and writing your own programs in the language you designed, and it’s all simulated the whole time. Machine language is pretty advanced as far as things go.
From your description this sounds more like a job in IBM’s R&D department than a game
All the best games sound like jobs when you describe them.
factorio, satisfactory, oxygen not included, RimWorld, Stellaris, dwarf fortress, gregtech new horizons…
So do many simulation games.
We got to do something simular in uni. We modeled the CPU in VHDL and had to set up our own language, then we were to program a game for it. One of the most fun and interesting courses we got to do!
OS and embedded dev here. I use assembly all the time. I’ve even worked on firmware that was entirely in assembly of strict requirements that couldn’t be met in C.
Also even machine code hides a lot about how the underlying machine works so if you really want to do computing from scratch you really do hate to invent the universe because there’s abstractions all the way up the hardware stack just like there is in software.
I had an assembly class in college. I didn’t love of at all. Got my first job after graduating and it was writing space shuttle engine control software, which was in assembly. I was kind of surprised at how fast it became natural after dealing with it full time. Still, it felt luxurious when we upgraded the controller and could do the software in C.
“oh no, I had to do literal rocket science”
Not since the 1980s on a Commodore 64.
SYS64738
Assembly used to be a required course for CS undergrads in the 90s. Is that no longer the case?
Also we had to take something called Computer Architecture, which was like an EE class designing circuits with gates and shit.
I think the university I went to phased out the EE requirements the year after me. Honestly, I think it should be required. Understanding how the computer “thinks” is such an important skill.
I still had to do that in the late 2010s in college
Required course work for electrical engineers in the early 2000s.
I had to learn assembly but was one topic of many we handled in architecture. Like one question of one exam. That was one of the toughest professors we had, class was about 2001
I attended two different Bachelor’s courses, one with a very technical (2016-2018) and one with a more high level focus (2018-2023). The first did have a class where we learned how to go from logic gates to a full ALU as well as some actual EE classes, but I didn’t go far enough or memorise the list of classes to remember whether Assembly would have become a thing. We learned programming with first Processing, then C and C++.
The second had C as an elective course, and that was as technical and low-level as it ever got.
Which target did you use? Having to learn even a fraction of modern x86 would be ridiculous, but SPARC or something could be good to know, just to reduce the “magic box” effect.
I learned MIPS as an undergrad. Pretty neat little RISC architecture.
I learned mips as graduate. In undergrad had to build with logic gates for things like 2 digit decimal counter and my architecture classes were diagram blocks for a simple CPU. But by that time we knew how to do moderate complexity circuits in VHDL simulation, and we had to make a simple VHDL circuit run for real in FPGA.
This was a long time ago. I’m pretty sure it was 8086.
Its still a thing
Look at mister fancy pants with and assembler.
How about entering straight opcode, operand with only a hex keypad and two pairs of 7 segment LEDs. You can only see one set of numbers at a time. You had to write it out on paper to be able to keep track and count positions so you don’t use your spot.
I had to do this as a project in school. Two 8088 units that we breadboarded to a UART that we used to drive a fiber optic link to communicate with each other with a basic protocol. All descrete components hand wired and coded.
It made you tie all of skills together into a full system of hardware and software.
Alright you and Joe McMillan had a great weekend we get it
deleted by creator
Assembly is hard, because you need to understand your problem on multiple levels and get absolute zero guidance by compilers.
Even C guides you a tiny bit and takes away some of the low level details, so you have more mental capacity to actually solve your problem.
Oh, and you have a standard library. Assembly seems to involve solving everything yourself. No simple function call to truncate a string or turn a char array to uppercase.
deleted by creator
Missing “;” on line 148.
Having toyed with video game reverse engineering, I definitely feel like I ought to learn a bit more. I understand
mov
, pointers and registers, and I think there was someinc
andadd
in the code I read to try to figure out base pointers and pointer paths (using Cheat Engine), but I think knowing some more would serve me well there.Modern decompilers like the one packaged with Ghidra helps a lot for intuiting how instructions work. Unfortunately, a lot of video game code is obfuscated, so you’re probably more likely to run into weird instructions, but OK the other hand you’ll learn what they do faster than when you rarely encounter them.
If you want to write amd64 code, you can get away with mastering just one instruction, and that’s the kind of tomfoolery that obfuscated programs will try to use to make your life harder.
I wouldn’t be able to write Rollercoaster Tycoon in assembly because keeping track of all that code in assembly files must be hell, but people pretending like you need to be some kind of wizard to write assembly code are exaggerating.
Well, they’ve got a point for the bigger machine codes. Just the barebones specification for x86 is a doorstopper IIRC.
From what I’ve heard, writing big stuff in assembly comes down to play-acting the compiler yourself on paper, essentially.
[This comment has been deleted by an automated system]
What language is your pseudocode example modeled after? It vaguely reminds me of some iOs App code I helped debug (Swift?) but I never really learned the language so much as eyeballed it with educated guesses, and even with the few things I double checked it has been a few years, so I have no clue what is or isn’t legal syntax anymore.
That’s Kotlin. Mostly used for programming for the JVM, though it compiles to native code as well these days. Very interesting for cross platform app development, although I rarely do that these days.
I think Swift has a similar syntax, but it doesn’t do some of the less obvious Kotlin tricks as far as I’m aware.
I’ve heard of Kotlin in the context of Android apps, but never actually used or learned it. I did one mobile app dev project with Java in Android Studio, but never had any formal classes on it either and just learned as I went (the result was shit, but we got a decent grade for being able to evaluate the difficulties and shortcomings and point out learnings).
TIL. I had tried to understand it a bit, but felt lost pretty fast, and then eventually found out that’s because it’s huge. Is there a good intro to the basic instructions you’re aware of?
By “play act the compiler” I mean a fairly elaborate system of written notes that significantly exceeds the size of the actual program. Like, it’s no wonder they started thinking about building machine compilers at that stage.
I believe this guide can get you started pretty quickly to get the basics down. There are tons of guides online, but most of them will give you the basics (“this is how to find a prime number”) and then leave you on your own. Once you know how instructions, calling conventions, and system calls work, the rest of assembly programming is just reading documentation or Googling “how do I X in assembly”.
What can help is using websites like godbolt.org to write simple C programs and looking at the compiled output. Look up instructions you don’t recognize and make sure you don’t enable optimizations, unless you want to deal with atrocities like
VGF2P8AFFINEINVQB
.If you don’t mind getting started with old assembly, there are also more comprehensive guides for MS-DOS and old Windows that mostly involve 16 bit and 32 bit programs programming. 64 bit programming is different (uses more registers to pass variables, floating point support is guaranteed, etc.) but there aren’t as many good books on the topic anymore now that it’s become a niche.
I think there are quite a few guides out there for ARM these days, if you have something like a Raspberry Pi or an emulator you can also learn ARM assembly (which has fewer supported weird instructions, but also a tonne of weird stuff).
If you want to go deep, you can also check Ben Eater’s youtube channel where he shows step by step how an 8 bit computer on a breadboard works, how instructions relate to memory, and all that. With some intuition from that, learning amd64 assembly may be a lot easier than going from normal programming languages to assembly.
Edit: to get into understanding assembly programming, [Human Resource Machine[(https://store.steampowered.com/app/375820/Human_Resource_Machine/) will explain the concepts of assembly programming without ever overtly explaining the concepts. Plus, it’s a fun puzzle game.
Thank you!
Nah, I don’t hate myself that much.
In college back in 1991. Also had to do PASCAL and FORTRAN but thankfully those two were in a single course.
I also took PASCAL in the 90s, but it is considered a high level language, and writes similarly to other high lvl languages, assembly has a very different syntax
We used turbo pascal in school in the early 90’s. And it had assembly blocks… which I used copious amounts of because it was the only way to make the IBM PS/1’s do useful graphics.
Oh, I know. I meant that we had to take courses on older languages as part of the curriculum. That was a funky little college program. The oddest experience for me was taking Python back in the day as the “new thing” then not seeing it again until it absolutely exploded ~10 years ago. That program is also why I ended up playing with Linux so early on. The professors truly seemed to have a passion for emerging technologies while not wanting anyone to forget what came before. Thankfully, no punch cards.
I get the feeling that all of these assembly jokes are justifications to avoid learning assembly.
You can still make syscalls in assembly. Assembly isnt magic. It isn’t starting from the creation of matter and energy, it’s just very specific code.
It’s just a joke friend.
I said so in my comment, try to keep up.
A very bad one if it requires switching off a large portion of your brain to find it funny.
suspension of disbelief
Mebly I do, and mebly I don’t.
I have Dyslexia ¯_(ツ)_/¯ Sorry.
You dropped this \
Short explanation: Type ¯\\\_(ツ)\_/¯ to see ¯\_(ツ)_/¯.
Long expanation: Lemmy supports formatting, like _italic_ becomes italic. To stop this from happening, you can put a \ before it like \_; the \ isn’t shown. This is why ¯\_(ツ)_/¯ becomes ¯_(ツ)_/¯. To show a \ you need an additional \ like so: \\, and to make sure _ is shown and not turned into italic, it too needs \. This is why ¯\\\_(ツ)\_/¯ becomes ¯\_(ツ)_/¯
Alternatively, you can just use the `` enclosure, used for single line code.
That is a “grave accent” or a “backtick”, the key you will find on the left of the ‘1’ key and under the ‘Esc’ key on a standard (ISO, maybe) 104/105 key qwerty keyboard.¯\_(ツ)_/¯
I’m sorry, I have no idea what you’re talking about. Could you explain it in assembly?
global _main extern _GetStdHandle@4 extern _WriteFile@20 extern _ExitProcess@4 section .text _main: ; DWORD bytes; mov ebp, esp sub esp, 4 ; hStdOut = GetstdHandle( STD_OUTPUT_HANDLE) push -11 call _GetStdHandle@4 mov ebx, eax ; WriteFile( hstdOut, message, length(message), &bytes, 0); push 0 lea eax, [ebp-4] push eax push (message_end - message) push message push ebx call _WriteFile@20 ; ExitProcess(0) push 0 call _ExitProcess@4 ; never here hlt message: db '¯\\\_(ツ)\_/¯', 10 message_end:
Do you want to show us what that looks like in assembly, ASCII from machine code? …ha, ha, ha, no!
Depends on the device, I know. Such a pain without the higher level languages.
What would it look like for ARM android touch screens? Just for one character…
But if some characters go missing or are exchanged for others for no discernable reason, then might that be an exploit on a EC or assembly level?
The backslash is known as an escape character in this context, because it removes (escapes) the special meaning of the following character.
It’s also used that way in most Unix shells.