Day 5: Print Queue
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Zig
const std = @import("std"); const List = std.ArrayList; const Map = std.AutoHashMap; const tokenizeScalar = std.mem.tokenizeScalar; const splitScalar = std.mem.splitScalar; const parseInt = std.fmt.parseInt; const print = std.debug.print; const contains = std.mem.containsAtLeast; const eql = std.mem.eql; var gpa = std.heap.GeneralPurposeAllocator(.{}){}; const alloc = gpa.allocator(); const Answer = struct { middle_sum: i32, reordered_sum: i32, }; pub fn solve(input: []const u8) !Answer { var rows = splitScalar(u8, input, '\n'); // key is a page number and value is a // list of pages to be printed before it var rules = Map(i32, List(i32)).init(alloc); var pages = List([]i32).init(alloc); defer { var iter = rules.iterator(); while (iter.next()) |rule| { rule.value_ptr.deinit(); } rules.deinit(); pages.deinit(); } var parse_rules = true; while (rows.next()) |row| { if (eql(u8, row, "")) { parse_rules = false; continue; } if (parse_rules) { var rule_pair = tokenizeScalar(u8, row, '|'); const rule = try rules.getOrPut(try parseInt(i32, rule_pair.next().?, 10)); if (!rule.found_existing) { rule.value_ptr.* = List(i32).init(alloc); } try rule.value_ptr.*.append(try parseInt(i32, rule_pair.next().?, 10)); } else { var page = List(i32).init(alloc); var page_list = tokenizeScalar(u8, row, ','); while (page_list.next()) |list| { try page.append(try parseInt(i32, list, 10)); } try pages.append(try page.toOwnedSlice()); } } var middle_sum: i32 = 0; var reordered_sum: i32 = 0; var wrong_order = false; for (pages.items) |page| { var index: usize = page.len - 1; while (index > 0) : (index -= 1) { var page_rule = rules.get(page[index]) orelse continue; // check the rest of the pages var remaining: usize = 0; while (remaining < page[0..index].len) { if (contains(i32, page_rule.items, 1, &[_]i32{page[remaining]})) { // re-order the wrong page const element = page[remaining]; page[remaining] = page[index]; page[index] = element; wrong_order = true; if (rules.get(element)) |next_rule| { page_rule = next_rule; } continue; } remaining += 1; } } if (wrong_order) { reordered_sum += page[(page.len - 1) / 2]; wrong_order = false; } else { // middle page number middle_sum += page[(page.len - 1) / 2]; } } return Answer{ .middle_sum = middle_sum, .reordered_sum = reordered_sum }; } pub fn main() !void { const answer = try solve(@embedFile("input.txt")); print("Part 1: {d}\n", .{answer.middle_sum}); print("Part 2: {d}\n", .{answer.reordered_sum}); } test "test input" { const answer = try solve(@embedFile("test.txt")); try std.testing.expectEqual(143, answer.middle_sum); try std.testing.expectEqual(123, answer.reordered_sum); }
Julia
No really proud of todays solution. Probably because I started too late today.
I used a dictionary with the numbers that should be in front of any given number. Then I checked if they appear after that number. Part1 check. For part 2 I just hoped for the best that ordering it would work by switching each two problematic entries and it worked.
::: spoiler
function readInput(inputFile::String) f = open(inputFile,"r"); lines::Vector{String} = readlines(f); close(f) updates::Vector{Vector{Int}} = [] pageOrderingRules = Dict{Int,Vector{Int}}() readRules::Bool = true #switch off after rules are read, then read updates for (i,line) in enumerate(lines) line=="" ? (readRules=false;continue) : nothing if readRules values::Vector{Int} = map(x->parse(Int,x),split(line,"|")) !haskey(pageOrderingRules,values[2]) ? pageOrderingRules[values[2]]=Vector{Int}() : nothing push!(pageOrderingRules[values[2]],values[1]) else #read updates push!(updates,map(x->parse(Int,x),split(line,","))) end end return updates, pageOrderingRules end function checkUpdateInOrder(update::Vector{Int},pageOrderingRules::Dict{Int,Vector{Int}})::Bool inCorrectOrder::Bool = true for i=1 : length(update)-1 for j=i+1 : length(update) !haskey(pageOrderingRules,update[i]) ? continue : nothing update[j] in pageOrderingRules[update[i]] ? inCorrectOrder=false : nothing end !inCorrectOrder ? break : nothing end return inCorrectOrder end function calcMidNumSum(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int midNumSum::Int = 0 for update in updates checkUpdateInOrder(update,pageOrderingRules) ? midNumSum+=update[Int(ceil(length(update)/2))] : nothing end return midNumSum end function calcMidNumSumForCorrected(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int midNumSum::Int = 0 for update in updates inCorrectOrder::Bool = checkUpdateInOrder(update,pageOrderingRules) inCorrectOrder ? continue : nothing #skip already correct updates while !inCorrectOrder for i=1 : length(update)-1 for j=i+1 : length(update) !haskey(pageOrderingRules,update[i]) ? continue : nothing if update[j] in pageOrderingRules[update[i]] mem::Int = update[i]; update[i] = update[j]; update[j]=mem #switch entries end end end inCorrectOrder = checkUpdateInOrder(update,pageOrderingRules) end midNumSum += update[Int(ceil(length(update)/2))] end return midNumSum end updates, pageOrderingRules = readInput("day05Input") println("part 1 sum: $(calcMidNumSum(updates,pageOrderingRules))") println("part 2 sum: $(calcMidNumSumForCorrected(updates,pageOrderingRules))")
:::
Go
Using a map to store u|v relations. Part 2 sorting with a custom compare function worked very nicely
spoiler
func main() { file, _ := os.Open("input.txt") defer file.Close() scanner := bufio.NewScanner(file) mapPages := make(map[string][]string) rulesSection := true middleSumOk := 0 middleSumNotOk := 0 for scanner.Scan() { line := scanner.Text() if line == "" { rulesSection = false continue } if rulesSection { parts := strings.Split(line, "|") u, v := parts[0], parts[1] mapPages[u] = append(mapPages[u], v) } else { update := strings.Split(line, ",") isOk := true for i := 1; i < len(update); i++ { u, v := update[i-1], update[i] if !slices.Contains(mapPages[u], v) { isOk = false break } } middlePos := len(update) / 2 if isOk { middlePage, _ := strconv.Atoi(update[middlePos]) middleSumOk += middlePage } else { slices.SortFunc(update, func(u, v string) int { if slices.Contains(mapPages[u], v) { return -1 } else if slices.Contains(mapPages[v], u) { return 1 } return 0 }) middlePage, _ := strconv.Atoi(update[middlePos]) middleSumNotOk += middlePage } } } fmt.Println("Part 1:", middleSumOk) fmt.Println("Part 2:", middleSumNotOk) }
Because you’re just sorting integers and in a single pass, the a == b and a > b distinction doesn’t actually matter here, so the cmp can very simply be
is a|b in rules
, no map needed.Edit: I realise it would be a sidegrade for your case because of how you did P1, just thought it was an interesting insight, especially for those that did P1 by checking if the input was sorted using the same custom compare.
func solution(input string) (int, int) { // rules: ["a|b", ...] // updates: [[1, 2, 3, 4], ...] var rules, updates = parse(input) sortFunc := func(a int, b int) int { if slices.Contains(rules, strconv.Itoa(a)+"|"+strconv.Itoa(b)) { return -1 } return 1 } var sumOrdered = 0 var sumUnordered = 0 for _, update := range updates { if slices.IsSortedFunc(update, sortFunc) { sumOrdered += update[len(update)/2] } else { slices.SortStableFunc(update, sortFunc) sumUnordered += update[len(update)/2] } } return sumOrdered, sumUnordered }
Haskell
I should probably have used
sortBy
instead of this ad-hoc selection sort.import Control.Arrow import Control.Monad import Data.Char import Data.List qualified as L import Data.Map import Data.Set import Data.Set qualified as S import Text.ParserCombinators.ReadP parse = (,) <$> (fromListWith S.union <$> parseOrder) <*> (eol *> parseUpdate) parseOrder = endBy (flip (,) <$> (S.singleton <$> parseInt <* char '|') <*> parseInt) eol parseUpdate = endBy (sepBy parseInt (char ',')) eol parseInt = read <$> munch1 isDigit eol = char '\n' verify :: Map Int (Set Int) -> [Int] -> Bool verify m = and . (zipWith fn <*> scanl (flip S.insert) S.empty) where fn a = flip S.isSubsetOf (findWithDefault S.empty a m) getMiddle = ap (!!) ((`div` 2) . length) part1 m = sum . fmap getMiddle getOrigin :: Map Int (Set Int) -> Set Int -> Int getOrigin m l = head $ L.filter (S.disjoint l . preds) (S.toList l) where preds = flip (findWithDefault S.empty) m order :: Map Int (Set Int) -> Set Int -> [Int] order m s | S.null s = [] | otherwise = h : order m (S.delete h s) where h = getOrigin m s part2 m = sum . fmap (getMiddle . order m . S.fromList) main = getContents >>= print . uncurry runParts . fst . last . readP_to_S parse runParts m = L.partition (verify m) >>> (part1 m *** part2 m)
Nim
Solution: sort numbers using custom rules and compare if sorted == original. Part 2 is trivial.
Runtime for both parts: 1.05 msproc parseRules(input: string): Table[int, seq[int]] = for line in input.splitLines(): let pair = line.split('|') let (a, b) = (pair[0].parseInt, pair[1].parseInt) discard result.hasKeyOrPut(a, newSeq[int]()) result[a].add b proc solve(input: string): AOCSolution[int, int] = let chunks = input.split("\n\n") let later = parseRules(chunks[0]) for line in chunks[1].splitLines(): let numbers = line.split(',').map(parseInt) let sorted = numbers.sorted(cmp = proc(a,b: int): int = if a in later and b in later[a]: -1 elif b in later and a in later[b]: 1 else: 0 ) if numbers == sorted: result.part1 += numbers[numbers.len div 2] else: result.part2 += sorted[sorted.len div 2]
Nice, compact and easy to follow. The implicit
result
object reminds me of Visual Basic.
Python
sort using a compare function
from math import floor from pathlib import Path from functools import cmp_to_key cwd = Path(__file__).parent def parse_protocol(path): with path.open("r") as fp: data = fp.read().splitlines() rules = data[:data.index('')] page_to_rule = {r.split('|')[0]:[] for r in rules} [page_to_rule[r.split('|')[0]].append(r.split('|')[1]) for r in rules] updates = list(map(lambda x: x.split(','), data[data.index('')+1:])) return page_to_rule, updates def sort_pages(pages, page_to_rule): compare_pages = lambda page1, page2:\ 0 if page1 not in page_to_rule or page2 not in page_to_rule[page1] else -1 return sorted(pages, key = cmp_to_key(compare_pages)) def solve_problem(file_name, fix): page_to_rule, updates = parse_protocol(Path(cwd, file_name)) to_print = [temp_p[int(floor(len(pages)/2))] for pages in updates if (not fix and (temp_p:=pages) == sort_pages(pages, page_to_rule)) or (fix and (temp_p:=sort_pages(pages, page_to_rule)) != pages)] return sum(map(int,to_print))
No need for
floor
, you can just uselen(pages) // 2
.nice one thanks
C#
using QuickGraph; using QuickGraph.Algorithms.TopologicalSort; public class Day05 : Solver { private List<int[]> updates; private List<int[]> updates_ordered; public void Presolve(string input) { var blocks = input.Trim().Split("\n\n"); List<(int, int)> rules = new(); foreach (var line in blocks[0].Split("\n")) { var pair = line.Split('|'); rules.Add((int.Parse(pair[0]), int.Parse(pair[1]))); } updates = new(); updates_ordered = new(); foreach (var line in input.Trim().Split("\n\n")[1].Split("\n")) { var update = line.Split(',').Select(int.Parse).ToArray(); updates.Add(update); var graph = new AdjacencyGraph<int, Edge<int>>(); graph.AddVertexRange(update); graph.AddEdgeRange(rules .Where(rule => update.Contains(rule.Item1) && update.Contains(rule.Item2)) .Select(rule => new Edge<int>(rule.Item1, rule.Item2))); List<int> ordered_update = []; new TopologicalSortAlgorithm<int, Edge<int>>(graph).Compute(ordered_update); updates_ordered.Add(ordered_update.ToArray()); } } public string SolveFirst() => updates.Zip(updates_ordered) .Where(unordered_ordered => unordered_ordered.First.SequenceEqual(unordered_ordered.Second)) .Select(unordered_ordered => unordered_ordered.First) .Select(update => update[update.Length / 2]) .Sum().ToString(); public string SolveSecond() => updates.Zip(updates_ordered) .Where(unordered_ordered => !unordered_ordered.First.SequenceEqual(unordered_ordered.Second)) .Select(unordered_ordered => unordered_ordered.Second) .Select(update => update[update.Length / 2]) .Sum().ToString(); }
Oh! Sort first and then check for equality. Clever!
You’ll need to sort them anyway :)
(my first version of the first part only checked the order, without sorting).
Kotlin
That was an easy one, once you define a comparator function. (At least when you have a sorting function in your standard-library.) The biggest part was the parsing. lol
import kotlin.text.Regex fun main() { fun part1(input: List<String>): Int = parseInput(input).sumOf { if (it.isCorrectlyOrdered()) it[it.size / 2].pageNumber else 0 } fun part2(input: List<String>): Int = parseInput(input).sumOf { if (!it.isCorrectlyOrdered()) it.sorted()[it.size / 2].pageNumber else 0 } val testInput = readInput("Day05_test") check(part1(testInput) == 143) check(part2(testInput) == 123) val input = readInput("Day05") part1(input).println() part2(input).println() } fun parseInput(input: List<String>): List<List<Page>> { val (orderRulesStrings, pageSequencesStrings) = input.filter { it.isNotEmpty() }.partition { Regex("""\d+\|\d+""").matches(it) } val orderRules = orderRulesStrings.map { with(it.split('|')) { this[0].toInt() to this[1].toInt() } } val orderRulesX = orderRules.map { it.first }.toSet() val pages = orderRulesX.map { pageNumber -> val orderClasses = orderRules.filter { it.first == pageNumber }.map { it.second } Page(pageNumber, orderClasses) }.associateBy { it.pageNumber } val pageSequences = pageSequencesStrings.map { sequenceString -> sequenceString.split(',').map { pages[it.toInt()] ?: Page(it.toInt(), emptyList()) } } return pageSequences } /* * An order class is an equivalence class for every page with the same page to be printed before. */ data class Page(val pageNumber: Int, val orderClasses: List<Int>): Comparable<Page> { override fun compareTo(other: Page): Int = if (other.pageNumber in orderClasses) -1 else if (pageNumber in other.orderClasses) 1 else 0 } fun List<Page>.isCorrectlyOrdered(): Boolean = this == this.sorted()
Uiua
This is the first one that caused me some headache because I didn’t read the instructions carefully enough.
I kept trying to create a sorted list for when all available pages were used, which got me stuck in an endless loop.Another fun part was figuring out to use
memberof (∈)
instead offind (⌕)
in the last line ofFindNext
. So much time spent on debugging other areas of the codeRun with example input here
FindNext ← ⊙( ⊡1⍉, ⊃▽(▽¬)⊸∈ ⊙⊙(⊡0⍉.) :⊙(⟜(▽¬∈)) ) # find the order of pages for a given set of rules FindOrder ← ( ◴♭. [] ⍢(⊂FindNext|⋅(>1⧻)) ⊙◌⊂ ) PartOne ← ( &rs ∞ &fo "input-5.txt" ∩°□°⊟⊜□¬⌕"\n\n". ⊙(⊜(□⊜⋕≠@,.)≠@\n.↘1) ⊜(⊜⋕≠@|.)≠@\n. ⊙. ¤ ⊞(◡(°□:) ⟜:⊙(°⊟⍉) =2+∩∈ ▽ FindOrder ⊸≍°□: ⊙◌ ) ≡◇(⊡⌊÷2⧻.)▽♭ /+ ) PartTwo ← ( &rs ∞ &fo "input-5.txt" ∩°□°⊟⊜□¬⌕"\n\n". ⊙(⊜(□⊜⋕≠@,.)≠@\n.↘1) ⊜(⊜⋕≠@|.)≠@\n. ⊙. ⍜¤⊞( ◡(°□:) ⟜:⊙(°⊟⍉) =2+∩∈ ▽ FindOrder ⊸≍°□: ⊟∩□ ) ⊙◌ ⊃(⊡0)(⊡1)⍉ ≡◇(⊡⌊÷2⧻.)▽¬≡°□ /+ ) &p "Day 5:" &pf "Part 1: " &p PartOne &pf "Part 2: " &p PartTwo
Rust
Real thinker. Messed around with a couple solutions before this one. The gist is to take all the pairwise comparisons given and record them for easy access in a ranking matrix.
For the sample input, this grid would look like this (I left out all the non-present integers, but it would be a 98 x 98 grid where all the empty spaces are filled with
Ordering::Equal
):13 29 47 53 61 75 97 13 = > > > > > > 29 < = > > > > > 47 < < = < < > > 53 < < > = > > > 61 < < > < = > > 75 < < < < < = > 97 < < < < < < =
I discovered this can’t be used for a total order on the actual puzzle input because there were cycles in the pairs given (see how rust changed sort implementations as of 1.81). I used
usize
for convenience (I did it withu8
for all the pair values originally, but kept having to cast over and overas usize
). Didn’t notice a performance difference, but I’m sure uses a bit more memory.Also I Liked the
simple_grid
crate a little better than thegrid
one. Will have to refactor that out at some point.solution
use std::{cmp::Ordering, fs::read_to_string}; use simple_grid::Grid; type Idx = (usize, usize); type Matrix = Grid<Ordering>; type Page = Vec<usize>; fn parse_input(input: &str) -> (Vec<Idx>, Vec<Page>) { let split: Vec<&str> = input.split("\n\n").collect(); let (pair_str, page_str) = (split[0], split[1]); let pairs = parse_pairs(pair_str); let pages = parse_pages(page_str); (pairs, pages) } fn parse_pairs(input: &str) -> Vec<Idx> { input .lines() .map(|l| { let (a, b) = l.split_once('|').unwrap(); (a.parse().unwrap(), b.parse().unwrap()) }) .collect() } fn parse_pages(input: &str) -> Vec<Page> { input .lines() .map(|l| -> Page { l.split(",") .map(|d| d.parse::<usize>().expect("invalid digit")) .collect() }) .collect() } fn create_matrix(pairs: &[Idx]) -> Matrix { let max = *pairs .iter() .flat_map(|(a, b)| [a, b]) .max() .expect("iterator is non-empty") + 1; let mut matrix = Grid::new(max, max, vec![Ordering::Equal; max * max]); for (a, b) in pairs { matrix.replace_cell((*a, *b), Ordering::Less); matrix.replace_cell((*b, *a), Ordering::Greater); } matrix } fn valid_pages(pages: &[Page], matrix: &Matrix) -> usize { pages .iter() .filter_map(|p| { if check_order(p, matrix) { Some(p[p.len() / 2]) } else { None } }) .sum() } fn fix_invalid_pages(pages: &mut [Page], matrix: &Matrix) -> usize { pages .iter_mut() .filter(|p| !check_order(p, matrix)) .map(|v| { v.sort_by(|a, b| *matrix.get((*a, *b)).unwrap()); v[v.len() / 2] }) .sum() } fn check_order(page: &[usize], matrix: &Matrix) -> bool { page.is_sorted_by(|a, b| *matrix.get((*a, *b)).unwrap() == Ordering::Less) } pub fn solve() { let input = read_to_string("inputs/day05.txt").expect("read file"); let (pairs, mut pages) = parse_input(&input); let matrix = create_matrix(&pairs); println!("Part 1: {}", valid_pages(&pages, &matrix)); println!("Part 2: {}", fix_invalid_pages(&mut pages, &matrix)); }
On github
*Edit: I did try switching to just using
std::collections::HashMap
, but it was 0.1 ms slower on average than using thesimple_grid::Grid
…Vec[idx]
access is faster maybe?I think you may have over thought it, I just applied the rules by swapping unordered pairs until it was ordered :D cool solution though
Good old bubble sort
Its called AdventOfCode, not AdventOfEfficientCode :D
Very cool approach. I didn’t think that far. I just wrote a compare function and hoped for the best.
I’ve got a “smart” solution and a really dumb one. I’ll start with the smart one (incomplete but you can infer). I did four different ways to try to get it faster, less memory, etc.
// this is from a nuget package. My Mathy roommate told me this was a topological sort. // It's also my preferred, since it'd perform better on larger data sets. return lines .AsParallel() .Where(line => !IsInOrder(GetSoonestOccurrences(line), aggregateRules)) .Sum(line => line.StableOrderTopologicallyBy( getDependencies: page => aggregateRules.TryGetValue(page, out var mustPreceed) ? mustPreceed.Intersect(line) : Enumerable.Empty<Page>()) .Middle() );
The dumb solution. These comparisons aren’t fully transitive. I can’t believe it works.
public static SortedSet<Page> Sort3(Page[] line, Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules) { // how the hell is this working? var sorted = new SortedSet<Page>(new Sort3Comparer(rules)); foreach (var page in line) sorted.Add(page); return sorted; } public static Page[] OrderBy(Page[] line, Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules) { return line.OrderBy(identity, new Sort3Comparer(rules)).ToArray(); } sealed class Sort3Comparer : IComparer<Page> { private readonly Dictionary<Page, System.Collections.Generic.HashSet<Page>> _rules; public Sort3Comparer(Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules) => _rules = rules; public int Compare(Page x, Page y) { if (_rules.TryGetValue(x, out var xrules)) { if (xrules.Contains(y)) return -1; } if (_rules.TryGetValue(y, out var yrules)) { if (yrules.Contains(x)) return 1; } return 0; } }
Method Mean Error StdDev Gen0 Gen1 Allocated Part2_UsingList (literally just Insert) 660.3 us 12.87 us 23.20 us 187.5000 35.1563 1144.86 KB Part2_TrackLinkedList (wrong now) 1,559.7 us 6.91 us 6.46 us 128.9063 21.4844 795.03 KB Part2_TopologicalSort 732.3 us 13.97 us 16.09 us 285.1563 61.5234 1718.36 KB Part2_SortedSet 309.1 us 4.13 us 3.45 us 54.1992 10.2539 328.97 KB Part2_OrderBy 304.5 us 6.09 us 9.11 us 48.8281 7.8125 301.29 KB Elixir
defmodule AdventOfCode.Solution.Year2024.Day05 do use AdventOfCode.Solution.SharedParse @impl true def parse(input) do [rules, pages_list] = String.split(input, "\n\n", limit: 2) |> Enum.map(&String.split(&1, "\n", trim: true)) {for(rule <- rules, do: String.split(rule, "|") |> Enum.map(&String.to_integer/1)) |> MapSet.new(), for(pages <- pages_list, do: String.split(pages, ",") |> Enum.map(&String.to_integer/1))} end def part1({rules, pages_list}), do: solve(rules, pages_list, false) def part2({rules, pages_list}), do: solve(rules, pages_list, true) def solve(rules, pages_list, negate) do for pages <- pages_list, reduce: 0 do total -> ordered = Enum.sort(pages, &([&1, &2] in rules)) if negate != (ordered == pages), do: total + Enum.at(ordered, div(length(ordered), 2)), else: total end end end
Nim
import ../aoc, strutils, sequtils, tables type Rules = ref Table[int, seq[int]] #check if an update sequence is valid proc valid(update:seq[int], rules:Rules):bool = for pi, p in update: for r in rules.getOrDefault(p): let ri = update.find(r) if ri != -1 and ri < pi: return false return true proc backtrack(p:int, index:int, update:seq[int], rules: Rules, sorted: var seq[int]):bool = if index == 0: sorted[index] = p return true for r in rules.getOrDefault(p): if r in update and r.backtrack(index-1, update, rules, sorted): sorted[index] = p return true return false #fix an invalid sequence proc fix(update:seq[int], rules: Rules):seq[int] = echo "fixing", update var sorted = newSeqWith(update.len, 0); for p in update: if p.backtrack(update.len-1, update, rules, sorted): return sorted return @[] proc solve*(input:string): array[2,int] = let parts = input.split("\r\n\r\n"); let rulePairs = parts[0].splitLines.mapIt(it.strip.split('|').map(parseInt)) let updates = parts[1].splitLines.mapIt(it.split(',').map(parseInt)) # fill rules table var rules = new Rules for rp in rulePairs: if rules.hasKey(rp[0]): rules[rp[0]].add rp[1]; else: rules[rp[0]] = @[rp[1]] # fill reverse rules table var backRules = new Rules for rp in rulePairs: if backRules.hasKey(rp[1]): backRules[rp[1]].add rp[0]; else: backRules[rp[1]] = @[rp[0]] for u in updates: if u.valid(rules): result[0] += u[u.len div 2] else: let uf = u.fix(backRules) result[1] += uf[uf.len div 2]
I thought of doing a sort at first, but dismissed it for some reason, so I came up with this slow and bulky recursive backtracking thing which traverses the rules as a graph until it reaches a depth equal to the given sequence. Not my finest work, but it does solve the puzzle :)
Rust
Used a sorted/unsorted comparison to solve the first part, the second part was just filling out the else branch.
use std::{ cmp::Ordering, collections::HashMap, io::{BufRead, BufReader}, }; fn main() { let mut lines = BufReader::new(std::fs::File::open("input.txt").unwrap()).lines(); let mut rules: HashMap<u64, Vec<u64>> = HashMap::default(); for line in lines.by_ref() { let line = line.unwrap(); if line.is_empty() { break; } let lr = line .split('|') .map(|el| el.parse::<u64>()) .collect::<Result<Vec<u64>, _>>() .unwrap(); let left = lr[0]; let right = lr[1]; if let Some(values) = rules.get_mut(&left) { values.push(right); values.sort(); } else { rules.insert(left, vec![right]); } } let mut updates: Vec<Vec<u64>> = Vec::default(); for line in lines { let line = line.unwrap(); let update = line .split(',') .map(|el| el.parse::<u64>()) .collect::<Result<Vec<u64>, _>>() .unwrap(); updates.push(update); } let mut middle_sum = 0; let mut fixed_middle_sum = 0; for update in updates { let mut update_sorted = update.clone(); update_sorted.sort_by(|a, b| { if let Some(rules) = rules.get(a) { if rules.contains(b) { Ordering::Less } else { Ordering::Equal } } else { Ordering::Equal } }); if update.eq(&update_sorted) { let middle = update[(update.len() - 1) / 2]; middle_sum += middle; } else { let middle = update_sorted[(update_sorted.len() - 1) / 2]; fixed_middle_sum += middle; } } println!("part1: {} part2: {}", middle_sum, fixed_middle_sum); }
TypeScript
This one ended up being easier than I thought it was going to be. My algorithm for correcting the incorrect orders needed to be ran multiple times, for some reason
https://github.com/spencersolberg/advent-of-code-2024/tree/main/05