• niva
    link
    fedilink
    English
    3
    edit-2
    7 months ago

    Does this A in 18A stand for ångström? Can they even produce anything below 10 nm?

  • @[email protected]
    link
    fedilink
    English
    237 months ago

    I was curious how bad 10% was, so I went digging to see what it should be.

    A “good” yield target on a modern process is something like 60-70%, so this is a shocking shockingly bad oof, though it’s also not a complete process, so it’s possible they can salvage this and turn it into something viable but, still, oof.

  • @[email protected]
    link
    fedilink
    English
    117 months ago

    For someone more in tune with the process, honest question: how is this not a failure on ASML, who makes the lithography machines? Or the company who makes the ultra pure silicon wafers? Is Intel just feeding unetchable garbage into the machines?

    • 【J】【u】【s】【t】【Z】
      link
      fedilink
      English
      4
      edit-2
      7 months ago

      I have no idea about anything at all, but part of me wants to see this be the result of some predictable, stupid mistake, like a unit conversion error or something, and another part of me wants it to be something totally unpredictable, like some unique gravitational anomaly or some latent radiation of some kind, like, something with muons.

    • @[email protected]
      link
      fedilink
      English
      17 months ago

      TSMC and Intel both use ASML lithography, but there are many many more steps than just lithography - Intel, TSMC, Samsung and other chipmakers use different processes to make the components on their chips (many of which are patented and so owned by specific parties).

      These things include the physical structure of the components and wiring on the chip, how the silicon is doped and with what ions, what coatings are put on to be etched in the lithography and what coatings are applied to the etched layers, how the chips are packaged and also how multiple chips can be combined into one package.

      Basically there are similarities but also hige differences between the different manufacturers, and a lot of trade secrets.

      If you’re interested in this kind of thing, I’d recommend the youtube channel Asianometry - the content creator is amazing.

    • @[email protected]
      link
      fedilink
      English
      27 months ago

      TSMC uses the same lithography and same wafers and gets working chips. It’s the fab process. Is it fixable? Idk.

    • @[email protected]
      link
      fedilink
      English
      167 months ago

      I think there’s more to it - IIRC, this is Intel’s factory

      Things that can mess up a batch- clean room not clean enough, vibrations from walking/vehicles/tectonic activity/lack of mechanical precision, temperature variations, impurities in chemicals or wafers, em interference, static charges, etc

      We’re talking a few dozen atoms in the wrong place, the tolerances are minuscule when you’re making modern chips. A small problem in the supply chain, process, or the building itself could all kill your yield

      I’m not an expert or anything, but I know this is a very unforgiving field

  • @[email protected]
    link
    fedilink
    English
    157 months ago

    For the record, the TSMC N2 node being worked on experimentally at the moment (and is expected to be more performant than Intel’s 18A) currently has over 60% yields.

    We don’t have exact figures on TSMC N4 (what AMD CPUs currently use), but reporting is widely that it is “over 80%”.

  • @[email protected]
    link
    fedilink
    English
    287 months ago

    Never thought I’d see the absolute downfall of Intel in my lifetime but the last decade has not been good for them.